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Effect of Noble Gas van der Waals Induced Dipoles on the Work Function of Metals
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We derive the van der Waals induced moment using a reaction field approach based on charge density
susceptibilities of several bodies interacting through Coulomb operators. We extend previous results to include
nonadditive contributions from up to four bodies. We then expand the Coulomb operators in a moment T-tensor
series. The lowest hyperpolarizability terms yielding nonzero values are products of the—dijpale
quadrupole hyperpolarizabilityB, for the body whose dipole moment is being evaluated and the dipole
dipole polarizabilitiesg, of the other interacting bodies. We then introduce the image approximation for the
case where one body is a solid and apply our results to the cases of argon and xenon on magnesium and on
palladium. By closure, we are able to separate the frequency dependencies of the various factors so that this
contribution can be reduced to a numerical factor that is then calculated by numerical integration. Our present
results show that the work function reductions of magnesium by argon and xenon can be accounted for by
our calculations. Our calculated reductions for palladium suggest that in the high work-function metals another
mechanism enters in an important way, as has been suggested by others. The relationship between our present
results and earlier estimates by ourselves and others is discussed.

I. Introduction be the problem when the Fermi level of the metal lies below
the excited atomic levels that are important contributors in
When two dissimilar systems interact, they give rise to a static perturbation treatments of the dipole moment, and indeed the
moment. This is true even if the systems are spherical and evenmoments increase sharply as a function of the metal work
if they do not overlap. These moments manifest themselves infunction in the cases where the work function exceeds the
collision-induced spectroscopy, in the far-infrared and micro- excited-state ionization ener§yhese considerations, together
wave spectroscopy of van der Waals complexes and of adsorbedvith the availability of values oB calculated by Maroulis and
molecules, and in the changes in the work function of metals Thakkar! Bishop and Lan¥,and by Cernusak et &lled to our
in the presence of adsorbed molecular monolayérs. reconsideration of the van der Waals moments as a possible

In our 1986 papet,we presented a systematic approach for explanation for the work function shift in the case of argon on
obtaining the induced dipole of an arbitrary system interacting magnesium, where the work function is about 0.5 eV below
via the Coulomb potential with another arbitrary system. the first atomic excited-state ionization energy.

Dispersion, induction, and charge interpenetration effects were N addition, we have included estimates of the effects of
included, but exchange was neglected. These results wereseveral-atom interactions. These effects turn out to be small
expressed in terms of charge-density susceptibilities and the fulldespite the large number of contributing terms; they also tend
(unexpanded) Coulomb potential. Htiteveloped a related  to reduce the dipole moment very slightly. The induced moment
approach based on polarization density and the dipole propagatopbtained is consistent with that needed to explain the work-
that for uncharged species can be shown to be equivalent andunction shift of magnesium in the presence of a monolayer of
has successfully applied it to calculations of collision-induced &rgon or xenon.

spectra. By use of the image approximation, we specialized our N section Il, we develop the formal expressions in terms of
results to the interaction of an atom and a nonferroelectric 3olid. the Coulomb operators and charge-density susceptibilities.

In 1986, there were no available values for the atomic dipole _FoIIowing this formal section,_in section lll, we ir_ltroducg the_
dipole—quadrupole hyperpolarizibilit, which was needed for ~ 'mage method, and expanding the Coulomb interaction in
the leading term in the calculation of the van der Waals moment T-tensors, we aPp'y the results to argon and Xenon on palladium
of adsorbed atoms, but approximate calculations for argon, and on magnesium. In the last section, we discuss our results.
krypton, and xenon on pa_lladium had yielded results that were || Theoretical Development
much too small to explain the large (on the order of 1 V)
reduction observed experimentaiiiMore recent experimental Equation 4 of papePlis an expression of the van der Waals
and theoretic8lwork has indicated that the neglect of mixing induced dipole moment in terms of charge-density susceptibili-
of excited atomic states with empty metal conduction states mayties of two interacting systems A and B.The relation of this

formulation to the more standard approach obtained from the
tPart of the special issue “George S. Hammond & Michael Kasha Raleigh-Schrodinger perturbation theory is indicated. In paper
Feft‘ls'ghr\i\];tr:.om correspondence should be addressed. Department of v system A always denoted a molecule (ato-m); system B could
Chemistry and Biochengistry. E-mail: Iinder@chem.fsu.edlj. Tel:p(850) 644- be a molecule (ato.m) or a solid (metal especially). The treatment
5299. Fax: (850) 644-8281. there was not confined to nonpolar molecular systems but could
* Department of Physics. include molecules with permanent moments.
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In this paper, we rederive the two-body susceptibility where
formulation using a reaction-field approaekeveloped earlier
for the treatment of intermolecular forces. This approach makesAX(z)(r 5T o1 o) =lim f dr fd‘[’
it easier to generalize the treatment to three- and four-body g:g
interactions, which is one of the main features of our investiga- A @ oot iy (0@ —(ER)T ' T
tion. In this paper, as in the first one, A will always denote the o o r)e € € €
molecule on which the dipole moment is induced. B can be a g3nq; =t — tor =t —t
molecule or a solid; C and D are other molecules adsorbed on | A,, ¢ is to be time-independent, the frequenciesand

the Surface, Wh|Ch interaCt W|th A and B and eaCh Other Our w' have to be equa' and Opposne, or more pr‘ec|se|yl they have

treatment here is confined to nonpolar molecules, and the tg be related by a function. Following Landau and LifshitZ,
induced dipole could be more appropriately described as awe define

dispersion-induced dipole.

In section 11.1, we derive the charge-density susceptibility 1/2EﬂBp(r2”, '), p(ry, )] .= [p(ry") p(ry)], o(w + w'")
formulation of the induced dipole moment first for the two- (2-3)
body interaction (part A) and then for the extension to include |ntegrating out thev’, which replacesd’) by (—w), switching
three- and four-body interactions (part B). In section 1.2, we the integration limits ofw from (—c, ®) to (0, »), which

describe the theory in terms of the linear and quadratic requires multiplication by 2, and applying the Caltewelton
polarizabilities and T-tensors, which is more practical although equatiof?

less accurate than the susceptibility treatment. In section 1.3,

we use the image method to descrit_ae the induced mqment _of h/2n{ImBX(l)(r2’, I, )} cothhaw/2KT = [o(r,") p(r,)],,
molecules adsorbed on a surface in terms of the dielectric (2-4)
constant of the solid, polarizabilities, and hyperpolarizabilities )

of the molecules. we obtain

I1.1. Charge-Density Susceptibility Formulation. A. Two- A - , . , .
Body Interaction. Consider a fluctuation in B at,” and time Hn—s = ﬁ) do» f drlf dry f dr, f dr f dr,

t" With charge densit)p(rlz’.', t'") to propagate to A via the B,V ) V(s rz’)*{ReAx(z)(rl; r oty
potentialV(r2", r1""), polarizing A and causing a response at B (1)
(inducing a moment) and returning Vi{ry’, ro') to B at the —o)}*h27{Im " (r ;) 1", w)}* coth Aw/2KTL (2-5)

charge density(r, t'). The induced moment can be calculated
by considering a hypothetical process whereby the charge at
r,' increases reversibly from zero to its full value by means of
a parameter that runs from 0 to 1. Since(r?) is linearly
dependent on the charge, we haygl) = p(A = 1) di.The
induced dipole moment at A caused by the fluctuations at B
may be described by

Upg=[dry [y [dr, [dr) [, [ dt [*

dt [0 2B p(ry, ts A= 1) V(T 1)

The designation Re and Im refer to the real and imaginary parts
of the charge-density susceptibilities. In the original integration
over dv from —o to o, only the even or real part gf®
contributes.

The linear and quadratic complex charge-density susceptibili-
ties are given below:

O, w) = @3 Rt > [oon(r") oM@ + w0, = i8) =

Ponlr) Pro(r (@ — wg, — 18)] (2-6)
K o o =—w)=
AT PR Sl SN el O V(PR PR R (P v [1+P, orr, oOFim A5 5 {20000 pilr)

- S n
_ ) ) " e ol Mol @eon + @ = 18)] + polr)pin(r) ono(r)/
=S fai fanf dg [ [ &L [+ 0 = 1B+ 0 — i) ()
dt”’ rlAX(Z)(rl; r]_': t— t', r]_”a t — t”)

whereP is an operator that permutes simultaneously the position

V() V(T )* j;)l dA Y,[Bo(r,", t'; A), vectors and the frequencies. _
5 An expression similar tbua-g, namely Aug.—a with the Re
p(ry, t; A =1)], (2-1b) and Im designation interchanged, represents polarization orig-
inating from fluctuations in A. Together they constitute the
(We have used the symmetric form of the product of &pis induced moment in A:

in eq 2-1b because these operators do not commute). The times A )
are arranged so that> t' > t". Fourier decomposing the = "ugn t upg =h27 Re i

integrand, using adiabatic switch-on perturbatidties” and . " ' " won
ot yields Sdry [fdry [dryr [dry [dry < E M ry)

R ) . . V(I‘l', rzy) '/:)‘” dow Ax(Z)(rl; rlr' w: r]_”, _6())*
Ung =1, f_w dw f_w dw fdl’lfdrl fdrl f BX(l)(rzu; 1) 0)0(2-8)

dry f dra [, V(ry", 1) Vg, 1) The result in eq 2-5 in terms of the hyperbolic cotangent is
AT wir o'y, o), applicable to both quantal and classical regimes. In the strict

o quantal limit T = 0) in which we are interested here, cditta/
p(ry @) &M 0@2) ey,
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Although the theory is formally complete, it is convenient to

Linder and Kromhout

I1.2. (Hyper)polarizabilty Formulation. If we expand the

express the results in terms of frequencies along the negativeCoulomb potentiaV/(ry, r») in a multipole serieg,'3we obtain

axis of the complex frequency plane; there the susceptibilities
are real. Thus, if we replace by f = w — iyandw' by f = v’ —
iy = —w — iy and integrate along the imaginary axis, we have

Pu=n2x [dry [dry [yt [dry [dry
*V(rlu, rzu)* V(I‘l', rzy)* '/:O dyAX(Z)(rly r]_,, _ly, r]_”;
=iy —y) (2:9)

where

A, —iy) = 2/ z " 0o Pon("") ool (@or + YP)
" (2-10a)
KO, =iy, —iy) = LRAL + P(r',—iy; r,—iy)]*
Z Z {200 P Poolr) ol [wa@en” + YO +

Pok("") L") Pro(r) (@, — YZ)/
(06l + Y)(@o,” + YA} (2-10b)

B. Generalization to 3- and 4-Body Interactions. The
reaction potential procedure for generating the induced dipole
moment on A can readily be generalized to include other
molecules. In the presence of a third body, C, we may visualize
a fluctuation that starts &p(r3'", t"") of molecule C, propagates
via V(r3'", ry") to B, polarizes it causing a fluctuation that
propagates vi&(r,", r1"") to A where it polarizes A, producing
an induced moment ab(r1), and a charge fluctuation that
propagates via/(r{', r3'") to C. For any given configuration,
the result is the same for the route €B — A as for C— A

an expression in terms of moment operators and T tensors.
From the coupling of the moments with the charge-
density susceptibilities, one obtains the (hyper)polarizabilities.
The most important polarizabilities for a system of nonpolar
molecules are the ordinary dipetéipole polarizability, a,

and the dipole-dipole quadrupole hyperpolarizabiliB. Along

the imaginary frequency axis, these polarizabilities take the
form

ag, =~ [dr [dr e, —iyr)

Byg,o(—iy, —iy) = [dr [dr [dr @, —iy;r,
—iy) 05, (r') 1, (2-13)

(2-12)

where g, = Y»(3rgr, — r20p,) is the quadrupole moment
operator. Denoting the second- and third-rank T-tensor
components, respectively, asP(A, B) and T,,s®(C, A)
where the capital letters refer to the molecules A, B, et cetera,
we obtain for the hyperpolarizability formulation of the
two-, three- and four-body induced moment, analogous to
eq 2-11,

A, = h12aT, P(A, B) [ dy "By, s(—iy, —iy) Poy(—iy)

+ hinP(B, O)[T,P(A, B) T, ?(B, C) T,,,°AC, A)
[0 dy "By, s(—iy, —iy) Pas (i) S, (—iy)]
+ 3n/=P(B, C, D)[T,?(A, B) T, (B, C)

T,:%C, D) T.;, (D, A)

— B, so only one route need be considered, and the result has

to be multiplied by 2.

In the presence of C and D, starting with D, there are six
permutations among A, B, and C, and thus the final result has
to be multiplied by 6.

The induced dipole moment due to the two-body and non-
additive three-body and four-body interactions can now be
written

Pu=n2x [dry [dry [dry" [y [dryry
V(ry", 1) V(ry's 1)
B 0 G P N P B el (PR P
+hlw [dry [dry [dry” [dry [dryt [dry
f drg" roV(rg, ry) V(ry", r,"y V(rg", ry)
o dy Py iy =iy) B0 —iy)
v R )
+ 3z [dr, [dry [dr" [dry [dry
Jdrg [drgr [dry [dr, 1,
V(g 1) V) Vg 1) V(" ry)
Y A e O P N P 1 B PR P
Grgs ey, —iy) 20 —iy) (2-12)

iy)

x [0 dy By s(—iy, —iy) Pag(—iy) “a,,(—iy)
Po,(—iy)] (2-14)

Repeated tensor indices imply summations oyer, andz.

P refers to the permutation of molecules in its arguments.
Term 1 is the induced moment on A by the van der Waals
interaction with B. Eventually, B will be treated as a solid, and
thus the first term is the moment induced in A by the solid.
The second term represents a nonadditive contribution due to
the presence of one additional molecule. The last term represents
the nonadditive contribution due to two additional molecules.
The contributions to the moment will be later referred to
respectively a;, M,, andMs.

I1.3. Image Method. We employ for aten | a coordinate
systemry, ri, ry centered on the atomic nucleus. Since we are
neglecting exchange and charge transfer, we assume that the
atomic nuclei are separated from the image plane of the metal
by a distanc&,, which we choose to be the collision radiys
+ 0.7 A, and from the nearest atomic nucleus by Zhe added
0.7 A is a somewhat arbitrarily chosen “screening length” to
allow for the image plane of the metal being below the
adsorption surfac¥

If the atom 1 has a charge densifff’) at a pointr; = x;i +
yi + Zk,, then the effect of a dielectric solid is to produce an
image charge-p(ry)((e — 1)/(e + 1)) located at a poinit;; as
far below the surface as the poin} is above, on a line
perpendicular to the surface througl € is the dielectric
constant. In this paper, we choose thaxis (direction ofk)
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along this line in the direction from the surface to atom I. Thus, ()
the image charge is located at

TE) T(2)
n=rn-2&z+zor ®%9 %@ ?’@
=Xi+yj—(2Z,+2Z)k  (2-15) N

Thus, a combination such as (we temporarily ignore the
frequency dependences)

Figure 1. Schematic of the interactions in the two-atom terms. Images
are shown by dotted circles and primed letters, and atoms are shown
by solid-line circles and no primes.

P Vs 1) s T Vs 1) SO 1) T 1) 1)

(@)
would become @ Q\T(Z) A
{ AT (i< (o

e =1\ o\ gmr oy Co@yer
(e + 1)'0 (r) VI r9) (15 1) @) ®) T®

. . )
The charge density(r}) is, of course, actually a part gf!) @ /._2_. 1/(@
or @, The frequency dependence ot (¢ 1)/(c + 1)) is ®<@: A &\ Q T(2)
assumed to be the same as thadté® except that the excitation - *-

frequency is replaced by the plasma frequency divided/By T®)

in the closure approximation in the metallic ligfitwhere
(((0) ~ /e(0) + 1)) — 1. @/@
Thus, by choosing B to represent the solid, we can relate the (AR RO D
charge density susceptibility of B to the dielectric constant of

the solid by substituting the image form Figure 2. Schematic of the interactions in the three-atom terms.

Symbols are the same as those in Figure 1.
I B l . T H r J—
f dr, f dr, By vy, —iy) VAryrp) V(r,r) =

[e(=iy) — 1We(=iy) + 1 V(' 1) (2-16) which enables us to writec and B as their zero-frequency
values multiplied by a frequency factor. This greatly simpli-
fies the integration of our expressions over imaginary frequen-
cies and enables the effect of this integration to be condensed
into a numerical factor multiplied by an expression that

If we expandV in eq 2-16 in a multipole series, we obtain for
a nonpolar molecule adsorbed on a surface

_ 4 00 . .
= 3h/(87Z,) j;; dy [e(—iy) — 1/[e(—iy) + 1] x involves only zero-frequency values of B, and (¢ — 1)/
3B, {—iy, —iy) + 2°B,, (—iy, —iy) + (€ + 1))
3Bz 1y, =) AX;X( Y , Y) , The terms involvingta, Pa, 2B are the lowest-order terms
2°Byy( iy, —iy)] (2-17) surviving the T-tensor expansion; we have not considered

. _ s higher-order hyperpolarizabilities because we expect such terms
For a spherical atonByxx= Bzyzy= */4Bzz2: to be relatively small and because the hyperpolarizabilities are

The expressions for the nonadditive teris and Ms are not known. Indeed, only in recent years have reliable values of
much more complicated and are discussed in some detail ing pacome available for noble gases.

the section on applications. The inclusion of an additional atom in a term contributing to

the dipole moment of atom A reduces that contribution by about
1. Application to an Adsorbed Monolayer on the Plane 1 order of magnitude, as we shall see. However, we find that
Surface of a Metal including an additional interaction of the metal with a previously
unimaged atom in the original term reduces the term by roughly

The system to which we apply the results of the preceding a factor of 3 on the average (and occasionaibreasest) and
section is a square lattice of argon (or xenon) atoms phys- changes the sign.
adsorbed as a monolayer on the plane surface of a semi-infinite  As shown in Figures 1 and 2, there are three types of terms
solid. We identify system B of the previous section as the solid for two-atom interactions differing in the imaging process
and the noble gas atoms as systems A, C, D, et cetera. To avoidncluded, and there are seven types of three-atom terms. Also,
the complications of treating B in detail, we will utilize the in a lattice of N> atoms, there areNg — 1) configurations for
image approximation, as we have previol&ty.For this each two-atom term type antl{ — 1)(N2 — 2) configurations
reason, we treat the “order of interaction” as equal to the for each three-atom term type. (Atom A, whose dipole moment
number of atoms involved regardless of the number of images is being calculated as representative of an arbitrarily chosen atom
included. in an infinite lattice, is fixed for convenience at the center of

Finally, we have expanded the interactions remaining after the lattice.)N is always chosen to be odd, and the lattice sums
applying the image approximation in the usual T-tensor expan- are taken over the atoms in a circle, centered on A, of radius
sion and have carried out the integrations over the atomic (N — 1)r,. The value ofN is increased until the sums are
coordinates by recognizing the polarizabilities and hyperpolar- independent oN to three figures. Despite the rapid increase in
izabilities as the appropriate integrals over the charge densitythe number of terms abl increases, the sum is essentially
susceptibilities. constant folN > 15. As stated in section Il, we designate the

The imaginary frequency dependencesooénd B are the one-atom term aMj, the two-atom nonadditive terms &,
same as those of® and @, respectively. As we did in  and the three-atom nonadditive terms Ms. We have not
our 1986 papet, we will approximate these in closure, calculated terms involving larger numbers of atoms, but we
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believe that they will be relatively small. The single-atom
contribution is

1 , ,
Ml = (27[)(3 11){ Bzzz;r(s)z(A A) + BZZXJ;SX)X(A y A) +
BZZWTgyy(A' A) zxz;r >(<32)>(A" A) - zyz;r S?%A', A) -
B, E(SZZ(A" A) — zysz §’3)BZ(A'7 A)} (3-4)

where the symbols (A A) indicate that the displacement
vector from the center of the image of atom A to the center
of atom A is used to calculate®@. 111 is A times the inte-
gral over the imaginary frequencies and has the dimen-
sions of energy. The frequency integrals are defined below.
The B's in the above expression are the zero-frequency
B’s.

For single-image terms corresponding to the first diagram in
Figure 1, theM, terms are

M, = a{B,,,IT?(A", C) T¥(C, A) + TY(A', C)
TOUC, A) + TOA,C) THLC, A +

B, T2(A", C) TOUC, A) + T,(A', ©)
T /(C, A+

TOUC, A) + TO(A", C) T,
B, JTA(A", C) TOUC, A) + TE(A', C)
TOUC, A) + T2(A", ©) T(C, A)] -
T, o) T8C, A+ TEA, C)
TOLC, A) + TOA, ) TOC,A)] -
B, TP(A", C) TO(C, A) + T(A", C)
TIUC, A) +TA, ) TO(C, A)] -
Bod T2(A', C) THAC, A) + T(A", ©)
TOAC, A) +TEA', C) THLC, A)] —
TOA', ©) TOLC, A) + TOA', C)

7727

ZXZ

zyyi

TOAC, A) +TEA", ) THLC, A)]}( ) (3-5)

wherely; is an integral over the imaginary frequencies and the
o andB are at zero frequency.

We have included in eq 3-1 the seven nonzero components

of By, for a spherical atom. In the evaluation, we have used
the relations between these seven Bgg.given in our previous
paper: B.s= Bzzyy= (—%2)Bz2zand all others equésB,z

Also, for a spherical atom, we have dropped the component

subscripts ona. since there are only three equal diagonal
components.

The prime on A indicates that the displacement vector from

the image of A to atom C is used to calculate the components

of T@, whereas the displacement from atom C to atom A is
used to calculate @. As in eq 3-4 above, the negative sign on
the terms utilizingB,s, andB,, reflects the reversal of the
andy components of dipoles by imaging whereasBhg, terms
are not negative because theomponents of dipoles are not
reversed by imaging.

By similar reasoning, the two-atom terms corresponding to
the second diagram in Figure 1 are
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=B, [TAA, C) TOC, A) — TI(A, C)
TOAC, A) — TO(A, ) TEC, A)] +
B, T2(A, C) TSC, A) — TS(A', C)
TOUC, A) = TA, C) TO(C, A)] +
)[T(z)(A C) TOUC, A) — T(A, C)
TOAC, A) = TOA, C) TE(C, A)] +
T2, ) TEC, A) — TEA, C)
TOLC, A) = TO(A, C) TO(C, A)] +
B, JT(A, C) TEY(C, A) — TA(A, C)
TOUC, A) — TO(A, C) TEYC, A)] +

zzy

ZXZ

B,od TH(A, C) TOC, A) — T(A, C)
TOAC, A) = TOA, C) TEUC, A) +
B, IT2(A, C) TEUC, A) — TH(A, C)

TOLC, A) - TR, ) TOLC, A)]}( ) (3-6)

The two image terms are like those in eq 3-6 except the
coefficients 0fBzzx Bzyzy Bzxa andB,yy are negative, the @-

(A, C) terms are replaced by?{A’, C) terms as in eq 3-4, and
l21 is replaced byl

We do not display explicitly the seven term types for the
three-atom terms, but the logic is the same.

The last thing to be discussed in this section is the integration
over the imaginary frequencies. We approximate the frequency
dependence of the various factors by closure. The frequency
dependence of the dipetalipole polarizabilitya. becomes®?/

(@? + y?), wherea is the effective excitation frequency; the
frequency dependence of the factar {{ 1)/(e¢ + 1)) becomes
([(Y2)wA(H2)(wp? + Y3)]), wherewy, is the plasma frequency
of the metal, and the frequency dependend® loécomed/zf(y),
where

20°

0%+ VP

Thus, the frequency integral for a term involvingatoms and
| images is, apart from the factor df{) mentioned above,

@~ )
IR

fly) = 3-7)

1, |
2%

1,
Zw—i-yz

(3-8)

—h [ dyf(y)( “ yz)

Although it is possible to carry out these integrals in closed
form, we have evaluated them numerically with the aid of Maple
7 software.

IV. Results

The values of the dipotedipole polarizabilityo and the
dipole—dipole—quadrupole hyperpolarizabili$ for argon were
taken from Cernusok, Diercksen, and Saflej,

a=11.07 au

B —167.5au

7227
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TABLE 1: Frequency Integrals I, (€V)?2

magnesium palladium
n/m 1 2 3 1 2 3

Ar 1 21.72 32.57

2 18.82 14.22 25.64 22.48

3 16.95 13.36 11.29 21.85 19.32 18.28
Xe 1 19.35 27.39

2 16.31 12.96 20.91 18.97

3 1444 1196 10.39 1756 16.37 1545

an is the number of atoms, and is the number of images.

TABLE 2: Contributions to the Total Dispersion-Induced
Moment as a Function of Monolayer Diameter for Argon
and Xenon on Magnesiuna?

N= 3 5 9 15 25
Ar M, x 10¢ —-154 -189 -195 -195 -195
M3 x 10° —2.55 —-194 —-130 -1.28 -—1.28

M; = 1.11x 102 atomic units
M = 1.08 x 102 atomic units
Xe My x 10 —6.94 —8.48
Mz x 1¢ —18.2 —-14.3
M; = 3.22 x 102 atomic units
M = 3.12 x 102 atomic units

aM = M; + M, + Ma. ® To these figuresy is independent ol for
N = 3. A subscript orM indicates the number of atoms contributing
to that term. The monolayer diameter ¥ { 1) atomic diameters-
2r,(N — 1).

—8.71
—9.92

—8.72
—9.80

—8.72
—9.80

TABLE 3: Contributions to the Total Dispersion-Induced
Moment as a Function of Monolayer Diameter for Argon
and Xenon on Palladiun®®

N= 3 5 9 15 25
Ar M, x 100 —-2.05 -252 -2.60 -—-2.60 —2.60
Ms x 1¢  —-3.25 -252 -1.70 -1.67 —1.67

M; = 1.66 x 102 atomic units
M = 1.63 x 102 atomic units
Xe M, x 10 —-8.72 —10.6
Ms x 10° —-21.9 -17.4
M; = 4.56 x 10 2 atomic units
M = 4.43 x 102 atomic units

aM = M; + M, + Ma. ® To three figuresM is independent ol for
N > 5. A subscript orM indicates the number of atoms contributing.
The monolayer diameter idN(— 1) atomic diameters= 2r,(N — 1).

—10.9
—12.4

—10.9
—12.2

—10.9
—12.2

whereas the values for xenon (in au)

a=27.7

B —812.0

2227"

were taken from Maroulis and Thak&With the exception of
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all argon atoms within 15 atomic diameters. Both the two- and
three-atom nonadditive contributions reduce the moment, but
the two-atom terms increased slightly in magnitude as the size
of the monolayer increased whereas the three-atom terms
decreased slightly in magnitude. The number of terms in these
sums increases rapidly as the size of the monolayer increases,
being 72 — 1)(N? — 2) for the M3 terms and 3¢?> — 1) for
the M5 terms.

The total moments can be converted to D by multiplying by
the Bohr radius in angstroms times the electronic charge in
statcoulombs times 18 This yields

M = 2.74x 10 2D for argon on magnesium
M = 7.94 x 10 2D for xenon on magnesium
M = 4.14x 10 2D for argon on palladium

M = 11.25x 102 D for xenon on palladium

By dividing theseM values by the square of the atomic diameter

in centimeters, one obtains the dipole moment per unit area,
which is equal to (1/4) times the potential step across the layer

(and hence the reduction in the work function due to the

monolayer) in statvolts, which is easily converted to volts by

multiplying by 300:

_ 300M

r2

v

Ad (4-1)

The values obtained are

A¢p =0.0817 eV, Ar on Mg

A¢ = 0.180 eV, Xe on Mg

A¢p =0.124 eV, Aron Pd

A¢p =0.256 eV, Xe on Pd

The experimental values are 0.10 eV for Ar on Mg and
approximately 0.31 eV for Ar on Pd, 0.21 eV for Xe on Mg,
and 0.93 eV for Xe on Pd as estimated from the graphs of Chen
et al®
V. Discussion

Our calculated work-function reduction for argon and for
Xenon on magnesium are in good agreement with the values
given in the graphs of Chen et alconsidering the approxima-
tions we used in our calculations:

the plasma frequency of magnesium, the rest of the data used The centers of the adsorbed atoms were assumed to be

here was the same as in our 1979 p&pahe plasma frequency
of magnesium, 10.9 eV, was taken from Pikes.

Table 1 contains the values of the integréls over the
negative imaginary frequencies of the terms involving

separated from the image plane of the metal by 0.7 A more
than the atomic collision radius. Of course, the use of the image
method itself is an approximation. In addition, our model of
the argon and xenon lattice is no doubtveaiwhich would

adsorbed atoms anmd interactions between the metal substrate affect the density of dipole moments in our calculation of the
and m of the n atoms in the surface monolayer. The plasma reduction in the work function. What can be said is that the

frequency of the metatyp, and the effective excitation level of
argon, @, were expressed in electronvolts, kg, is also in
electronvolts.

dispersion dipoles can account for the work-function reduction
in these cases.
Chen et aP also noted that the work-function reduction of

Tables 2 and 3 contain the contributions to the dispersion- magnesium appeared to be simply proportional to the argon

induced moment for an isolated atom of argdv;, on

surface coverage; there was no significant reduction of the

magnesium (Table 2) and palladium (Table 3) and the nonad- atomic moment with coverage such as was observed, for

ditive two-atom,M,, and three-atomMs;, contributions as a
function of the size of the monolayer df atomic diameters.

example, by Palmbet§ for xenon on palladium. This is
consistent with the small contribution of the nonadditive two-

The contributions have converged to their final values (to and three-atom terms to our calculated moments: reductions
three figures) if they are summed over a monolayer including of about 1.11.2% for the two-atom terms and 0.07% for the
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