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We derive the van der Waals induced moment using a reaction field approach based on charge density
susceptibilities of several bodies interacting through Coulomb operators. We extend previous results to include
nonadditive contributions from up to four bodies. We then expand the Coulomb operators in a moment T-tensor
series. The lowest hyperpolarizability terms yielding nonzero values are products of the dipole-dipole
quadrupole hyperpolarizability,B, for the body whose dipole moment is being evaluated and the dipole-
dipole polarizabilities,R, of the other interacting bodies. We then introduce the image approximation for the
case where one body is a solid and apply our results to the cases of argon and xenon on magnesium and on
palladium. By closure, we are able to separate the frequency dependencies of the various factors so that this
contribution can be reduced to a numerical factor that is then calculated by numerical integration. Our present
results show that the work function reductions of magnesium by argon and xenon can be accounted for by
our calculations. Our calculated reductions for palladium suggest that in the high work-function metals another
mechanism enters in an important way, as has been suggested by others. The relationship between our present
results and earlier estimates by ourselves and others is discussed.

I. Introduction

When two dissimilar systems interact, they give rise to a static
moment. This is true even if the systems are spherical and even
if they do not overlap. These moments manifest themselves in
collision-induced spectroscopy, in the far-infrared and micro-
wave spectroscopy of van der Waals complexes and of adsorbed
molecules, and in the changes in the work function of metals
in the presence of adsorbed molecular monolayers.1,2

In our 1986 paper,3 we presented a systematic approach for
obtaining the induced dipole of an arbitrary system interacting
via the Coulomb potential with another arbitrary system.
Dispersion, induction, and charge interpenetration effects were
included, but exchange was neglected. These results were
expressed in terms of charge-density susceptibilities and the full
(unexpanded) Coulomb potential. Hunt4 developed a related
approach based on polarization density and the dipole propagator
that for uncharged species can be shown to be equivalent and
has successfully applied it to calculations of collision-induced
spectra. By use of the image approximation, we specialized our
results to the interaction of an atom and a nonferroelectric solid.3

In 1986, there were no available values for the atomic dipole-
dipole-quadrupole hyperpolarizibilityB, which was needed for
the leading term in the calculation of the van der Waals moment
of adsorbed atoms, but approximate calculations for argon,
krypton, and xenon on palladium had yielded results that were
much too small to explain the large (on the order of 1 V)
reduction observed experimentally.2b More recent experimental5

and theoretical6 work has indicated that the neglect of mixing
of excited atomic states with empty metal conduction states may

be the problem when the Fermi level of the metal lies below
the excited atomic levels that are important contributors in
perturbation treatments of the dipole moment, and indeed the
moments increase sharply as a function of the metal work
function in the cases where the work function exceeds the
excited-state ionization energy.5 These considerations, together
with the availability of values ofB calculated by Maroulis and
Thakkar,7 Bishop and Lam,8 and by Cernusak et al.9 led to our
reconsideration of the van der Waals moments as a possible
explanation for the work function shift in the case of argon on
magnesium, where the work function is about 0.5 eV below
the first atomic excited-state ionization energy.

In addition, we have included estimates of the effects of
several-atom interactions. These effects turn out to be small
despite the large number of contributing terms; they also tend
to reduce the dipole moment very slightly. The induced moment
obtained is consistent with that needed to explain the work-
function shift of magnesium in the presence of a monolayer of
argon or xenon.

In section II, we develop the formal expressions in terms of
the Coulomb operators and charge-density susceptibilities.
Following this formal section, in section III, we introduce the
image method, and expanding the Coulomb interaction in
T-tensors, we apply the results to argon and xenon on palladium
and on magnesium. In the last section, we discuss our results.

II. Theoretical Development

Equation 4 of paper I3 is an expression of the van der Waals
induced dipole moment in terms of charge-density susceptibili-
ties of two interacting systems A and B.The relation of this
formulation to the more standard approach obtained from the
Raleigh-Schrodinger perturbation theory is indicated. In paper
I, system A always denoted a molecule (atom); system B could
be a molecule (atom) or a solid (metal especially). The treatment
there was not confined to nonpolar molecular systems but could
include molecules with permanent moments.
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In this paper, we rederive the two-body susceptibility
formulation using a reaction-field approach10 developed earlier
for the treatment of intermolecular forces. This approach makes
it easier to generalize the treatment to three- and four-body
interactions, which is one of the main features of our investiga-
tion. In this paper, as in the first one, A will always denote the
molecule on which the dipole moment is induced. B can be a
molecule or a solid; C and D are other molecules adsorbed on
the surface, which interact with A and B and each other. Our
treatment here is confined to nonpolar molecules, and the
induced dipole could be more appropriately described as a
dispersion-induced dipole.

In section II.1, we derive the charge-density susceptibility
formulation of the induced dipole moment first for the two-
body interaction (part A) and then for the extension to include
three- and four-body interactions (part B). In section II.2, we
describe the theory in terms of the linear and quadratic
polarizabilities and T-tensors, which is more practical although
less accurate than the susceptibility treatment. In section II.3,
we use the image method to describe the induced moment of
molecules adsorbed on a surface in terms of the dielectric
constant of the solid, polarizabilities, and hyperpolarizabilities
of the molecules.

II.1. Charge-Density Susceptibility Formulation. A. Two-
Body Interaction. Consider a fluctuation in B atr 2′′ and time
t′′ with charge densityF(r 2′′, t′′) to propagate to A via the
potentialV(r 2′′, r 1′′), polarizing A and causing a response atr 1

(inducing a moment) and returning viaV(r 1′, r 2′) to B at the
charge densityF(r 2′, t′). The induced moment can be calculated
by considering a hypothetical process whereby the charge at
r 2′ increases reversibly from zero to its full value by means of
a parameterλ that runs from 0 to 1. SinceF(r 2′) is linearly
dependent on the charge, we have dF(λ) ) F(λ ) 1) dλ.The
induced dipole moment at A caused by the fluctuations at B
may be described by

(We have used the symmetric form of the product of theBF’s
in eq 2-1b because these operators do not commute). The times
are arranged so thatt > t′ > t′′. Fourier decomposing the
integrand, using adiabatic switch-on perturbation eiωt′eεt′ and
eiω′t′′eηt′′, yields

where

andτ ) t - t′, τ′ ) t′ - t′′.
If AµArB is to be time-independent, the frequenciesω and

ω′ have to be equal and opposite, or more precisely, they have
to be related by aδ function. Following Landau and Lifshitz,11

we define

Integrating out theω′, which replaces (ω′) by (-ω), switching
the integration limits ofω from (-∞, ∞) to (0, ∞), which
requires multiplication by 2, and applying the Callen-Welton
equation12

we obtain

The designation Re and Im refer to the real and imaginary parts
of the charge-density susceptibilities. In the original integration
over dω from -∞ to ∞, only the even or real part ofø(2)

contributes.
The linear and quadratic complex charge-density susceptibili-

ties are given below:

whereP is an operator that permutes simultaneously the position
vectors and the frequencies.

An expression similar toAµArB, namely,AµBrA with the Re
and Im designation interchanged, represents polarization orig-
inating from fluctuations in A. Together they constitute the
induced moment in A:

The result in eq 2-5 in terms of the hyperbolic cotangent is
applicable to both quantal and classical regimes. In the strict
quantal limit (T ) 0) in which we are interested here, cothpω/
2kT f 1.

µArB ) ∫ dr 1∫ dr 1′ ∫ dr 1∫ dr 2′ ∫ dr 2′′ ∫-∞

t
dt′∫-∞

t′

dt′′ ∫0

1
dλB F(r 2′, t′; λ ) 1) V(r 2′, r 1′)

* r 1
Aø(2)(r 1; r 1′, t - t′; r 1′′, t′ - t′′) V(r 1′′,r 2′′)

B F(r 2′′, t′′; λ)
(2-1a)

) ∫ dr 1∫dr 1′ ∫ dr 1∫ dr 2′ ∫dr 2′′ ∫-∞bu>t
dt′∫-∞

t′

dt′′ r 1
Aø(2)(r 1; r 1′, t - t′; r 1′′, t′ - t′′)

*V(r 1′′, r 2′′)*V(r 1′, r 2′)* ∫0

1
dλ 1/2[

BF(r 2′′, t′′; λ),
BF(r 2′, t′; λ ) 1)]+ (2-1b)

AµArB ) 1/2 ∫-∞

∞
dω ∫-∞

∞
dω′ ∫ dr 1 ∫ dr 1′ ∫ dr 1′′ ∫

dr 2′ ∫ dr 2′′〈r 1*V(r 1′′, r 2′′)*V(r 2′, r 1′)*
Aø2(r 1; r 1′, ω; r 1′′, ω′)* 1/2[F(r 2′′, ω′),

F(r 2′,ω)]+ ei(ω′+ω)t e(ê+η)t〉 (2-2)

Aø(2)(r 1; r 1′, ω; r 1′′, ω′) ) lim
ηf0
δf0

∫ dτ ∫dτ′

Aø(2)(r 1; r 1′, τ; r 1′′, τ′) e-i(ω+ω′)τ e-(ê+η)τ e-iω′τ′ e-ητ′

1/2〈[
BF(r 2′′, ω′), F(r 2′, ω)]+〉 ) [F(r 2′′) F(r 2′)]ω δ(ω + ω′)

(2-3)

p/2π{ImBø(1)(r 2′, r 2, ω)} cothpω/2kT ) [F(r 2′′) F(r 2′)]ω

(2-4)

AµArB ) ∫0

∞
dω ∫ dr 1 ∫ dr 1′ ∫ dr 1′′ ∫ dr 2′ ∫ dr 2′′

〈r 1V(r 1′′, r 2′′) V(r 1′, r 2′)*{ReAø(2)(r 1; r 1′, ω; r 1′′,

-ω)}*p/2π{ImBø(1)(r 2′; r 2′′, ω)}* coth pω/2kT〉 (2-5)

ø(1)(r ; r ′, ω) ) lim
êf0

p-1 ∑
n

[F0n(r ′) Fn0(r )/(ω + ω0n - iê) -

F0n(r ) Fn0(r ′)/(ω - ω0n - iê)] (2-6)

ø(2)(r ; r ′, ω; r ′′, ω′ ) -ω) )
[1 + P(r ′, ω; r ′′, ω′)]*lim

êf0
p-2 ∑

k
∑

n

{2F0k(r) Fkn(r ′)

Fn0(r ′′)/[ω0k(ω0n + ω - iê)] + F0k(r ′)Fkn(r )Fn0(r ′′)/
[ω0k + ω - iê)(ω0n + ω - iê)} (2-7)

Aµ ) AµBA + AµAB ) p/2π Re i

∫ dr 1 ∫ dr 1′ ∫ dr 1′′ ∫ dr 2′ ∫ dr 2′′ * 〈r 1V(r 1′′, r 2′′)

V(r 1′, r 2′) ∫0

∞
dω Aø(2)(r 1; r 1′, ω; r 1′′, -ω)*

Bø(1)(r 2′′; r 2′, ω)〉 (2-8)
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Although the theory is formally complete, it is convenient to
express the results in terms of frequencies along the negative
axis of the complex frequency plane; there the susceptibilities
are real. Thus, if we replaceω by f ) ω - iy andω′ by f′ ) ω′ -
iy ) -ω - iy and integrate along the imaginary axis, we have

where

B. Generalization to 3- and 4-Body Interactions.The
reaction potential procedure for generating the induced dipole
moment on A can readily be generalized to include other
molecules. In the presence of a third body, C, we may visualize
a fluctuation that starts atCF(r3′′′, t′′′) of molecule C, propagates
via V(r 3′′′, r 2′′) to B, polarizes it causing a fluctuation that
propagates viaV(r 2′′, r 1′′) to A where it polarizes A, producing
an induced moment atF(r 1), and a charge fluctuation that
propagates viaV(r 1′, r 3′′) to C. For any given configuration,
the result is the same for the route Cf B f A as for Cf A
f B, so only one route need be considered, and the result has
to be multiplied by 2.

In the presence of C and D, starting with D, there are six
permutations among A, B, and C, and thus the final result has
to be multiplied by 6.

The induced dipole moment due to the two-body and non-
additive three-body and four-body interactions can now be
written

II.2. (Hyper)polarizabilty Formulation. If we expand the
Coulomb potentialV(r 1, r 2) in a multipole series,3,13 we obtain
an expression in terms of moment operators and T tensors.
From the coupling of the moments with the charge-
density susceptibilities, one obtains the (hyper)polarizabilities.
The most important polarizabilities for a system of nonpolar
molecules are the ordinary dipole-dipole polarizability, R,
and the dipole-dipole quadrupole hyperpolarizabilityB. Along
the imaginary frequency axis, these polarizabilities take the
form

where θâγ ) 1/2(3rârγ - r2δâγ) is the quadrupole moment
operator. Denoting the second- and third-rank T-tensor
components, respectively, as Tâε

(2)(A, B) and Tηγδ
(3)(C, A)

where the capital letters refer to the molecules A, B, et cetera,
we obtain for the hyperpolarizability formulation of the
two-, three- and four-body induced moment, analogous to
eq 2-11,

Repeated tensor indices imply summations overx, y, andz.
P refers to the permutation of molecules in its arguments.

Term 1 is the induced moment on A by the van der Waals
interaction with B. Eventually, B will be treated as a solid, and
thus the first term is the moment induced in A by the solid.
The second term represents a nonadditive contribution due to
the presence of one additional molecule. The last term represents
the nonadditive contribution due to two additional molecules.
The contributions to the moment will be later referred to
respectively asM1, M2, andM3.

II.3. Image Method. We employ for atom l a coordinate
systemr1, r ′1, r ′′1 centered on the atomic nucleus. Since we are
neglecting exchange and charge transfer, we assume that the
atomic nuclei are separated from the image plane of the metal
by a distanceZ0, which we choose to be the collision radiusrν
+ 0.7 Å, and from the nearest atomic nucleus by 2rν. The added
0.7 Å is a somewhat arbitrarily chosen “screening length” to
allow for the image plane of the metal being below the
adsorption surface.14

If the atom 1 has a charge densityF(r ′1) at a pointr1 ) x′1i +
y′1j + z′1k,, then the effect of a dielectric solid is to produce an
image charge-F(r ′1)((ε - 1)/(ε + 1)) located at a pointr̃ ′1; as
far below the surface as the pointr ′1 is above, on a line
perpendicular to the surface throughr ′1; ε is the dielectric
constant. In this paper, we choose thez axis (direction ofk)

Aµ ) p/2π ∫ dr 1 ∫ dr 1′ ∫ dr 1′′ ∫ dr 2′ ∫ dr 2′′ * r 1

*V(r 1′′, r 2′′)* V(r 1′, r 2′)* ∫0

∞
dy Aø(2)(r 1; r 1′, -iy; r 1′′,

-iy)*Bø(1)(r 2′′; r 2′, -iy) (2-9)

ø(1)(r ′′; r ′, -iy) ) 2/p ∑
n

′ ω0n F0n(r ′′) Fn0(r )/(ω0n
2 + y2)

(2-10a)

ø(2)(r ′′; r ′, -iy; r , -iy) ) 1/p2[1 + P(r ′,-iy; r ,-iy)]*

∑
n

∑
k

{2F0k(r ′′) Fkn(r ′) Fn0(r ) ω0n/[ω0k(ω0n
2 + y2)] +

F0k(r ′) Fkn(r ′′) Fn0(r ) (ω0kω0n - y2)/

[(ω0k
2 + y2)(ω0n

2 + y2)]} (2-10b)

Aµ ) p/2π ∫ dr 1 ∫ dr 1′ ∫ dr 1′′ ∫ dr 2′ ∫ dr 2′′ r 1

V(r 1′′, r 2′′) V(r 1′, r 2′)

* ∫0

∞
dy Aø(2)(r 1; r 1′, -iy; r 1′′, -iy) Bø(1)(r 2′′; r 2′, -iy)

+ p/π ∫ dr 1 ∫ dr 1′ ∫ dr 1′′ ∫ dr 2′ ∫ dr 2′′ ∫ dr 3′

∫ dr 3′′ r 1 V(r 3′, r 2′) V(r 1′′, r 2′′) V(r 3′′, r 1′)

* ∫0

∞
dy Aø(2)(r 1; r 1′, -iy; r 1′′,-iy) Bø(1)(r 2′′; r 2′, -iy)

*Cø(1)(r 3′; r 3′′,-iy)

+ 3p/π ∫ dr 1 ∫ dr 1′ ∫ dr 1′′ ∫ dr 2′ ∫ dr 2′′

∫ dr 3′ ∫ dr 3′′ ∫ dr 4′ ∫ dr 4′′ r 1

*V( r 3′, r 2′) V(r 1′′, r 2′′) V(r 3′′, r 4′) V(r 4′′, r 1′)

* ∫0

∞
dy Aø(2)(r 1; r 1′, -iy; r 1′′, -iy) Bø(1)(r 2′′; r 2′, -iy)

Cø(1)(r 3′; r 3′′, -iy) Dø(1)(r 4′; r 4′′, -iy) (2-11)

Râγ ) - ∫ dr ∫ dr ′ râø(1)(r ; r ′, -iy) rγ′ (2-12)

Bλâγδ(-iy, -iy) ) ∫ dr ∫ dr ′ ∫ dr ′′ rλø
(2)(r ; r ′, -iy; r ′′,

-iy) θâγ(r ′) rδ′′ (2-13)

Aµλ ) p/2πTâε
(2)(A, B) ∫0

∞
dy ABλâγδ(-iy, -iy) BRâε(-iy)

+ p/πP(B, C)[Tâε
(2)(A, B) Tεη

(2)(B, C) Tηγδ
(3)(C, A)

× ∫0

∞
dy ABλâγδ(-iy, -iy) BRâε(-iy) CRεη(-iy)]

+ 3p/πP(B, C, D)[Tâε
(2)(A, B) Tεη

(2)(B, C)

Tηê
(2)C, D) Têâδ

(3)(D, A)

× ∫0

∞
dy ABλâγδ(-iy, -iy) BRâε(-iy) CRεη(-iy)

DRηê(-iy)] (2-14)
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along this line in the direction from the surface to atom l. Thus,
the image charge is located at

Thus, a combination such as (we temporarily ignore the
frequency dependences)

would become

The charge densityF(r ′1) is, of course, actually a part ofø(1)

or ø(2). The frequency dependence of ((ε - 1)/(ε + 1)) is
assumed to be the same as that ofBø(1) except that the excitation
frequency is replaced by the plasma frequency divided byx2
in the closure approximation in the metallic limit2c where
((ε(0) - 1)/(ε(0) + 1)) f 1.

Thus, by choosing B to represent the solid, we can relate the
charge density susceptibility of B to the dielectric constant of
the solid by substituting the image form

If we expandV in eq 2-16 in a multipole series, we obtain for
a nonpolar molecule adsorbed on a surface

For a spherical atom,Bzxzx) Bzyzy) 3/4Bzzzz.
The expressions for the nonadditive termsM2 and M3 are

much more complicated and are discussed in some detail in
the section on applications.

III. Application to an Adsorbed Monolayer on the Plane
Surface of a Metal

The system to which we apply the results of the preceding
section is a square lattice of argon (or xenon) atoms phys-
adsorbed as a monolayer on the plane surface of a semi-infinite
solid. We identify system B of the previous section as the solid
and the noble gas atoms as systems A, C, D, et cetera. To avoid
the complications of treating B in detail, we will utilize the
image approximation, as we have previously.2c,3 For this
reason, we treat the “order of interaction” as equal to the
number of atoms involved regardless of the number of images
included.

Finally, we have expanded the interactions remaining after
applying the image approximation in the usual T-tensor expan-
sion and have carried out the integrations over the atomic
coordinates by recognizing the polarizabilities and hyperpolar-
izabilities as the appropriate integrals over the charge density
susceptibilities.3

The imaginary frequency dependences ofR and B are the
same as those ofø(1) and ø(2), respectively. As we did in
our 1986 paper,3 we will approximate these in closure,

which enables us to writeR and B as their zero-frequency
values multiplied by a frequency factor. This greatly simpli-
fies the integration of our expressions over imaginary frequen-
cies and enables the effect of this integration to be condensed
into a numerical factor multiplied by an expression that
involves only zero-frequency values ofR, B, and ((ε - 1)/
(ε + 1)).

The terms involvingCR, DR, AB are the lowest-order terms
surviving the T-tensor expansion; we have not considered
higher-order hyperpolarizabilities because we expect such terms
to be relatively small and because the hyperpolarizabilities are
not known. Indeed, only in recent years have reliable values of
B become available for noble gases.

The inclusion of an additional atom in a term contributing to
the dipole moment of atom A reduces that contribution by about
1 order of magnitude, as we shall see. However, we find that
including an additional interaction of the metal with a previously
unimaged atom in the original term reduces the term by roughly
a factor of 3 on the average (and occasionallyincreasesit) and
changes the sign.

As shown in Figures 1 and 2, there are three types of terms
for two-atom interactions differing in the imaging process
included, and there are seven types of three-atom terms. Also,
in a lattice ofN2 atoms, there are (N2 - 1) configurations for
each two-atom term type and (N2 - 1)(N2 - 2) configurations
for each three-atom term type. (Atom A, whose dipole moment
is being calculated as representative of an arbitrarily chosen atom
in an infinite lattice, is fixed for convenience at the center of
the lattice.)N is always chosen to be odd, and the lattice sums
are taken over the atoms in a circle, centered on A, of radius
(N - 1)rν. The value ofN is increased until the sums are
independent ofN to three figures. Despite the rapid increase in
the number of terms asN increases, the sum is essentially
constant forN g 15. As stated in section II, we designate the
one-atom term asM1, the two-atom nonadditive terms asM2,
and the three-atom nonadditive terms asM3. We have not
calculated terms involving larger numbers of atoms, but we

r̃ ′1 ) r ′1 - 2k(Z0 + z′1) or

) x′1i + y′1j - (2Z0 + z′1)k (2-15)

F(r ′1) V(r ′1, r ′2)
Bø(1)(r ′2; r ′′2) V(r ′′2, r ′3)

Cø(1)(r ′3; r ′′3)

-(ε - 1
ε + 1)F(r ′1) V(r̃ ′1, r ′3)

Cø(1)(r ′3, r ′′3)

∫ dr2′ ∫ dr2
Bø(1)(r2; r2′, -iy) V(r1r2) V(r2′r ) )

[ε(-iy) - 1]/[ε(-iy) + 1] V(r̃ ′1, r ) (2-16)

M1 ) 3p/(8πZo
4) ∫0

∞
dy [ε(-iy) - 1]/[ε(-iy) + 1] ×

[3ABλzzz(-iy, -iy) + 2ABλxzx (-iy, -iy) +

2ABλyzy(-iy, -iy)] (2-17)

Figure 1. Schematic of the interactions in the two-atom terms. Images
are shown by dotted circles and primed letters, and atoms are shown
by solid-line circles and no primes.

Figure 2. Schematic of the interactions in the three-atom terms.
Symbols are the same as those in Figure 1.
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believe that they will be relatively small. The single-atom
contribution is

where the symbols (A′, A) indicate that the displacement
vector from the center of the image of atom A to the center
of atom A is used to calculate T(3). I11 is p times the inte-
gral over the imaginary frequencies and has the dimen-
sions of energy. The frequency integrals are defined below.
The B’s in the above expression are the zero-frequency
B’s.

For single-image terms corresponding to the first diagram in
Figure 1, theM2 terms are

whereI21 is an integral over the imaginary frequencies and the
R andB are at zero frequency.

We have included in eq 3-1 the seven nonzero components
of BzRâγ for a spherical atom. In the evaluation, we have used
the relations between these seven andBzzzzgiven in our previous
paper: Bzzxx) Bzzyy) (-1/2)Bzzzzand all others equal3/4Bzzzz.
Also, for a spherical atom, we have dropped the component
subscripts onR since there are only three equal diagonal
components.

The prime on A indicates that the displacement vector from
the image of A to atom C is used to calculate the components
of T(2), whereas the displacement from atom C to atom A is
used to calculate T(3). As in eq 3-4 above, the negative sign on
the terms utilizingBzxâγ andBzyâγ reflects the reversal of thex
andy components of dipoles by imaging whereas theBzzâγ terms
are not negative because thez components of dipoles are not
reversed by imaging.

By similar reasoning, the two-atom terms corresponding to
the second diagram in Figure 1 are

The two image terms are like those in eq 3-6 except the
coefficients ofBzxzx, Bzyzy, Bzxxz, andBzyyzare negative, the T(2)-
(A, C) terms are replaced by T(2)(A′, C) terms as in eq 3-4, and
I21 is replaced byI22.

We do not display explicitly the seven term types for the
three-atom terms, but the logic is the same.

The last thing to be discussed in this section is the integration
over the imaginary frequencies. We approximate the frequency
dependence of the various factors by closure. The frequency
dependence of the dipole-dipole polarizabilityR becomes (ωj 2/
(ωj 2 + y2), whereωj is the effective excitation frequency; the
frequency dependence of the factor ((ε - 1)/(ε + 1)) becomes
([(1/2)ωp

2]/[( 1/2)(ωp
2 + y2)]), whereωp is the plasma frequency

of the metal, and the frequency dependence ofB becomes1/3 f(y),
where

Thus, the frequency integral for a term involvingn atoms and
l images is, apart from the factor of (1/3) mentioned above,

Although it is possible to carry out these integrals in closed
form, we have evaluated them numerically with the aid of Maple
7 software.

IV. Results

The values of the dipole-dipole polarizabilityR and the
dipole-dipole-quadrupole hyperpolarizabilityB for argon were
taken from Cernusok, Diercksen, and Sadlej,9

M1 ) ( 1
2π)(13I11){BzzzzTz,zz

(3) (A′, A) + BzzxxTz,xx
(3) (A′, A) +

BzzyyTz,yy
(3) (A′, A) - BzxzxTx,zx

(3) (A′, A) - BzyzyTy,zy
(3) (A′, A) -

BzxxzTx,xz
(3) (A′, A) - BzyyzTy,yz

(3) (A′, A)} (3-4)

M2 ) R{Bzzzz[Tzz
(2)(A′, C) Tzzz

(3)(C, A) + Tzx
(2)(A′, C)

Tx,zz
(3) (C, A) + Tzy

(2)(A′,C) Ty,zz
(3) (C, A)] +

Bzzxx[Tzz
(2)(A′, C) Tz,xx

(3) (C, A) + Tzx
(2)(A′, C)

Tx,xx
(3) (C, A) + Tzy

(2)(A′, C) Ty,xx
(3) (C, A)] +

Bzzyy[Tzz
(2)(A′, C) Tz,yy

(3) (C, A) + Tzx
(2)(A′, C)

Tx,yy
(3) (C, A) + Tzy

(2)(A′, C) Ty,yy
(3) (C, A)] -

Bzxzx[Txz
(2)(A′, C) Tz,zx

(3) (C, A) + Txx
(2)(A′, C)

Tx,zx
(3) (C, A) + Txy

(2)(A′, C) Ty,zx
(3) (C,A)] -

Bzyzy[Tyz
(2)(A′, C) Tz,zy

(3) (C, A) + Tyx
(2)(A′, C)

Tx,zy
(3) (C, A) + Tyy

(2)(A′, C) Ty,zy
(3) (C, A)] -

Bzxxz[Txz
(2)(A′, C) Tz,yz

(3) (C, A) + Txx
(2)(A′, C)

Tx,xz
(3) (C, A) + Txy

(2)(A′, C) Ty,xz
(3) (C, A)] -

Bzyyz[Tyz
(2)(A′, C) Tz,xz

(3) (C, A) + Tyx
(2)(A′, C)

Tx,yz
(3) (C, A) + Tyy

(2)(A′, C) Ty,yz
(3) (C, A)]}(I21

6π) (3-5)

M2 ) R{Bzzzz[Tzz
(2)(A, C) Tz,zz

(3) (C′, A) - Tzx
(2)(A, C)

Tx,zz
(3) (C′, A) - Tzy

(2)(A, C) Ty,zz
(3) (C′, A)] +

Bzzxx[Tzz
(2)(A, C) Tz,xx

(3) (C′, A) - Tzx
(2)(A′, C)

Tx,xx
(3) (C′, A) - Tzy

(2)(A, C) Ty,xx
(3) (C′, A)] +

Bzzyy[Tzz
(2)(A, C) Tz,yy

(3) (C′, A) - Tzx
(2)(A, C)

Tx,yy
(3) (C′, A) - Tzy

(2)(A, C) Ty,yy
(3) (C′, A)] +

Bzxzx[Txz
(2)(A, C) Tz,zx

(3) (C′, A) - Txx
(2)(A, C)

Tx,zx
(3) (C′, A) - Txy

(2)(A, C) Ty,zx
(3) (C′, A)] +

Bzyzy[Tyz
(2)(A, C) Tz,zy

(3) (C′, A) - Tyx
(2)(A, C)

Tx,zy
(3) (C′, A) - Tyy

(2)(A, C) Ty,zy
(3) (C′, A)] +

Bzxxz[Txz
(2)(A, C) Tz,xz

(3) (C′, A) - Txx
(2)(A, C)

Tx,xz
(3) (C′, A) - Txy

(2)(A, C) Ty,xz
(3) (C′, A)] +

Bzyyz[Tyz
(2)(A, C) Tz,xz

(3) (C′, A) - Tyx
(2)(A, C)

Tx,yz
(3) (C′, A) - Tyy

(2)(A, C) Ty,yz
(3) (C′, A)]}(I21

6π) (3-6)

f(y) ) 2ωj 2

ωj 2 + y2
+

ωj 2(ωj 2 - y2)

(ωj 2 + y2)2
(3-7)

Inl ) p∫0

∞
dy f(y)( ωj 2

ωj 2 + y2)n-1( 1
2

ωp
2

1
2

ωp
2 + y2)l

(3-8)

R ) 11.07 au

Bzzzz) -167.5 au
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whereas the values for xenon (in au)

were taken from Maroulis and Thakar.7b With the exception of
the plasma frequency of magnesium, the rest of the data used
here was the same as in our 1979 paper.2d The plasma frequency
of magnesium, 10.9 eV, was taken from Pines.15

Table 1 contains the values of the integralsImn over the
negative imaginary frequencies of the terms involvingn
adsorbed atoms andm interactions between the metal substrate
and m of the n atoms in the surface monolayer. The plasma
frequency of the metal,ωp, and the effective excitation level of
argon, ωj , were expressed in electronvolts, soImn is also in
electronvolts.

Tables 2 and 3 contain the contributions to the dispersion-
induced moment for an isolated atom of argon,M1, on
magnesium (Table 2) and palladium (Table 3) and the nonad-
ditive two-atom,M2, and three-atom,M3, contributions as a
function of the size of the monolayer ofN atomic diameters.

The contributions have converged to their final values (to
three figures) if they are summed over a monolayer including

all argon atoms within 15 atomic diameters. Both the two- and
three-atom nonadditive contributions reduce the moment, but
the two-atom terms increased slightly in magnitude as the size
of the monolayer increased whereas the three-atom terms
decreased slightly in magnitude. The number of terms in these
sums increases rapidly as the size of the monolayer increases,
being 7(N2 - 1)(N2 - 2) for theM3 terms and 3(N2 - 1) for
the M2 terms.

The total moments can be converted to D by multiplying by
the Bohr radius in angstroms times the electronic charge in
statcoulombs times 1010. This yields

By dividing theseM values by the square of the atomic diameter
in centimeters, one obtains the dipole moment per unit area,
which is equal to (1/4π) times the potential step across the layer
(and hence the reduction in the work function due to the
monolayer) in statvolts, which is easily converted to volts by
multiplying by 300:

The values obtained are

The experimental values are 0.10 eV for Ar on Mg and
approximately 0.31 eV for Ar on Pd, 0.21 eV for Xe on Mg,
and 0.93 eV for Xe on Pd as estimated from the graphs of Chen
et al.5

V. Discussion

Our calculated work-function reduction for argon and for
xenon on magnesium are in good agreement with the values
given in the graphs of Chen et al.,5 considering the approxima-
tions we used in our calculations:

The centers of the adsorbed atoms were assumed to be
separated from the image plane of the metal by 0.7 Å more
than the atomic collision radius. Of course, the use of the image
method itself is an approximation. In addition, our model of
the argon and xenon lattice is no doubt naı¨ve, which would
affect the density of dipole moments in our calculation of the
reduction in the work function. What can be said is that the
dispersion dipoles can account for the work-function reduction
in these cases.

Chen et al.5 also noted that the work-function reduction of
magnesium appeared to be simply proportional to the argon
surface coverage; there was no significant reduction of the
atomic moment with coverage such as was observed, for
example, by Palmberg16 for xenon on palladium. This is
consistent with the small contribution of the nonadditive two-
and three-atom terms to our calculated moments: reductions
of about 1.1-1.2% for the two-atom terms and 0.07% for the

TABLE 1: Frequency Integrals Imn (eV)a

magnesium palladium

n/m 1 2 3 1 2 3

Ar 1 21.72 32.57
2 18.82 14.22 25.64 22.48
3 16.95 13.36 11.29 21.85 19.32 18.28

Xe 1 19.35 27.39
2 16.31 12.96 20.91 18.97
3 14.44 11.96 10.39 17.56 16.37 15.45

a n is the number of atoms, andm is the number of images.

TABLE 2: Contributions to the Total Dispersion-Induced
Moment as a Function of Monolayer Diameter for Argon
and Xenon on Magnesiuma,b

N ) 3 5 9 15 25

Ar M2 × 104 -1.54 -1.89 -1.95 -1.95 -1.95
M3 × 105 -2.55 -1.94 -1.30 -1.28 -1.28
M1 ) 1.11× 10-2 atomic units
M ) 1.08× 10-2 atomic units

Xe M2 × 104 -6.94 -8.48 -8.71 -8.72 -8.72
M3 × 105 -18.2 -14.3 -9.92 -9.80 -9.80
M1 ) 3.22× 10-2 atomic units
M ) 3.12× 10-2 atomic units

a M ) M1 + M2 + M3. b To these figures,M is independent ofN for
N g 3. A subscript onM indicates the number of atoms contributing
to that term. The monolayer diameter is (N - 1) atomic diameters)
2rν(N - 1).

TABLE 3: Contributions to the Total Dispersion-Induced
Moment as a Function of Monolayer Diameter for Argon
and Xenon on Palladiuma,b

N ) 3 5 9 15 25

Ar M2 × 104 -2.05 -2.52 -2.60 -2.60 -2.60
M3 × 105 -3.25 -2.52 -1.70 -1.67 -1.67
M1 ) 1.66× 10-2 atomic units
M ) 1.63× 10-2 atomic units

Xe M2 × 104 -8.72 -10.6 -10.9 -10.9 -10.9
M3 × 105 -21.9 -17.4 -12.4 -12.2 -12.2
M1 ) 4.56× 10-2 atomic units
M ) 4.43× 10-2 atomic units

a M ) M1 + M2 + M3. b To three figures,M is independent ofN for
N g 5. A subscript onM indicates the number of atoms contributing.
The monolayer diameter is (N - 1) atomic diameters) 2rν(N - 1).

R ) 27.7

Bzzzz) -812.0

M ) 2.74× 10-2 D for argon on magnesium

M ) 7.94× 10-2 D for xenon on magnesium

M ) 4.14× 10-2 D for argon on palladium

M ) 11.25× 10-2 D for xenon on palladium

∆φ ) 300πM

rυ
2

(4-1)

∆φ ) 0.0817 eV, Ar on Mg

∆φ ) 0.180 eV, Xe on Mg

∆φ ) 0.124 eV, Ar on Pd

∆φ ) 0.256 eV, Xe on Pd
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three-atom terms, indicating a deviation from proportionality
of about 1.17-1.27%.

If we consider the calculated and experimental values for the
reduction of the palladium work function, then the calculated
dispersion reductions are smaller than the experimental values.
Or, more generally, the ratio of the work-function reduction
for palladium to that for magnesium is about half the experi-
mental ratio.

If we look at the reduction of the moment as a function of
the monolayer radius for xenon on palladium, then our calculated
reduction per atom as the coverage increases from zero to 1 is
less than 2%, just as in the case of magnesium, where the
experiments of Palmberg16 showed a change by a factor of 2.
These facts encourage one to believe that dispersion is adequate
to explain the work-function reduction on magnesium but that
some additional mechanism contributes significantly to the
work-function reduction of palladium; this mechanism could
be that suggested by Chen et al.,5,6 for example.
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